LIMIT THEOREMS FOR MARKOV PROCESSES(1)

BY S. R. FOGUEL

Summary. Let P(x, A) be the transition probability of a Markov Process that satisfies a "Doeblin Condition" and is irreducible (these notions are defined below). Then there are two possibilities:

- 1. The process has a finite invariant measure, $\lambda \neq 0$, and there exists an an integer k such that the limit of $P^{nk+j}(x,A)$ exists for every x, A and $0 \leq j < k$.
- 2. There exists a sequence of sets A_j with $\bigcup_{j=0}^{\infty} A_j = X$ such that $\lim_{n\to\infty} P^n(x,A_j) = 0$, $x \in X$.
- 1. Notation. Let (X, Σ) be a measurable space. Let P(x, A) be transition probabilities:
 - 1.1. P(x,A) is defined for $x \in X$ and $A \in \Sigma$ and $0 \le P(x,A) \le 1$.
 - 1.2. For a fixed x the set function $P(x, \cdot)$ is a measure on Σ .
 - 1.3. For a fixed $A \in \Sigma$ the function $P(\cdot, A)$ is measurable.

By measure we shall mean a countably additive, positive, finite measure. When we deal with finitely additive bounded measures we shall write $\mu \in ba(X, \Sigma)$. On occasions we shall deal with σ -finite, countably additive positive measures.

Let us use the terminology of [2, p. 240]. It is well known that the transition probabilities induce an operator P on $B(X, \Sigma)$ and on its conjugate space $ba(X, \Sigma)$ by:

- 1.4. If $f \in B(X, \Sigma)$, then $(Pf)(x) = \int f(y) P(x, dy)$.
- 1.5. If $\mu \in ba(X, \cdot)$, then $(\mu P)(A) = \int P(x, A) \mu(dx)$, where
- 1.6. $\int (Pf)(x) \mu(dx) = \int f(x) (\mu P)(dx)$.

The iterates of these operators are given by the same expressions where P is replaced by P^n :

$$P^{n}(x,A) = \int P^{n-k}(x,dy) P^{k}(y,A), \qquad 0 < k < n.$$

Note that if μ is countably additive, so is μP .

2. The limit theorems. Throughout this section we assume:

Received by the editors January 18, 1965.

⁽¹⁾ The research reported in this document has been sponsored in part by the Air Force Office of Scientific Research OAR under Grant AFEOAR 65/27 with the European Office of Aerospace Research, United States Air Force.

There exists a σ -finite measure ν with

- 2.1. Doeblin's Condition: There exists an integer d such that if v(A) = 0 then $\sup \{P^d(x,A): x \in X\} < 1$.
- 2.2. There exists a σ -finite measure λ that is stronger than v and subinvariant:

$$\lambda(A) \ge \int P(x,A) \lambda(dx).$$

2.3. The space X is a locally compact Hausdorff space and Σ consists of its Baire sets.

Thus by Theorem G on p. 52 of [4] every measure is regular.

DEFINITION. The process will be called v-irreducible if:

2.4. If
$$P^{n}(x, A) = 0$$
, $n = 1, 2, \dots$, for some x, then $v(A) = 0$.

REMARKS. Condition 2.1 is weaker than the classical Doeblin Condition (see [1, p. 192, hypothesis D]). There one assumes the conclusion whenever $v(A) \le \varepsilon$ for some fixed $\varepsilon > 0$; also uniformity in the sets A is assumed.

The σ -finite measure ν can be replaced by a finite measure ν_1 equivalent to it. Let $\nu_2 = \sum \nu_1 P^n/2^n$ then $\nu \ll \nu_2$ and 2.1 holds with respect to ν_2 . We shall see below that if $\mu \ll \tau$ then $\mu P \ll \tau P$; thus $\nu_1 P^n \ll \lambda P^n \leq \lambda$ and $\nu_2 \ll \lambda$. Finally let us show that if the process is ν -irreducible then it is ν_2 -irreducible.

Note first that if $0 \le f \in B(X, \Sigma)$ and $(P^n f)(x_0) = 0$, $n = 1, 2, \cdots$ for some x_0 , then

$$P^{n}(x_{0},\{x:f(x)\geq\varepsilon\})\leq\frac{1}{\varepsilon}(P^{n}f)(x_{0})=0.$$

Thus $\int f dv = 0$. Apply this to $f(y) = P^{k}(y, A)$ to conclude:

$$0 = P^{n}(x_{0}, A) = \int P^{k}(y, A) P^{n-k}(x_{0}, dy)$$

implies

$$\int P^k(y,A)\,\nu(dy) = 0.$$

Hence $v_2(A) = 0$ whenever $P^n(x_0, A) = 0$ for all n.

Thus we shall assume, with no loss of generality, that v is finite and $vP \ll v$.

Lemma 1. Let μ and τ be two σ -finite measures. If $\mu \ll \tau$, then $\mu P \ll \tau P$.

Proof. Let $d\mu = f d\tau$ and $d\mu_k = \min(f, k) d\tau$. Then

$$(\mu_k P)(A) = \int P(x,A)d\mu_k \leq k \int P(x,A)d\tau.$$

Thus

$$\mu_k P \ll \tau P$$
 and also $\mu P \ll \tau P$.

THEOREM 1. Let μ be any measure. If $\mu P^n = \tau_n + \sigma_n$, where $\tau_n \leqslant \nu$ and $\sigma_n \perp \nu$, then $\lim \sigma_n(X) = 0$.

Proof. Since $\tau_{n+1} + \sigma_{n+1} = \tau_n P + \sigma_n P$ and $\tau_n P \ll v$, then $\sigma_{n+1} \leq \sigma_n P$.

Assume that $\lim \sigma_n(X) \neq 0$. Let σ be a weak * limit point of σ_n , where $\sigma \in ba$. Let $Y \in \Sigma$ be such that $\nu(Y) = 0$ and $\sigma_n(X - Y) = 0$. Given $\varepsilon > 0$, choose n so that

$$|(\sigma P^d)(Y) - (\sigma_n P^d)(Y)| < \varepsilon,$$

thus

$$(\sigma P^d)(Y) \ge (\sigma_n P^d)(Y) - \varepsilon \ge \sigma_{n+d}(Y) - \varepsilon \ge \lim_{n \to \infty} \sigma_n(X) - \varepsilon$$

and

$$\lim \sigma_n(X) \le (\sigma P^d)(Y) = \int P^d(x, Y) \, \sigma(dx)$$

$$\le \sup \{ P^d(x, Y) : x \in X \} \} \, \sigma(X)$$

$$= \sup \{ P^d(x, Y) : x \in X \} \lim \sigma_n(X) < \lim \sigma_n(X)$$

by 2.1. This contradiction proves that $\lim \sigma_n(X) = 0$.

We may, and shall, assume that λ is equivalent to v:

Put $\lambda = \lambda_1 + \lambda_2$ where $\lambda_1 \leqslant v$ and $\lambda_2 \perp v$; then $\lambda(A) \geq (\lambda_1 P)(A) + (\lambda_2 P)(A)$ for every $A \in \Sigma$. Let X_1 be such that $\nu(X - X_1) = 0$ and $\lambda_2(X_1) = 0$ then $(\lambda_1 P)(A) = (\lambda_1 P)(A \cap X_1) \leq \lambda(A \cap X_1) = \lambda_1(A)$. Thus λ_1 is subinvariant, too, and $\lambda_1 \leqslant \nu$. Finally since $\nu \leqslant \lambda$, then $\nu \leqslant \lambda_1$. If $\lambda_1(A) = 0$, then $\lambda(A \cap X_1) = \lambda_1(A) = 0$ and $\nu(A) = \nu(A \cap X_1) = 0$, too.

Let P be considered as an operator on $L_2(X, \Sigma, \lambda)$ by extending it from $B(X, \Sigma)$ as in [3, pp. 1-2]. For the next lemma we shall use the notation of [3, Theorem 1.1]. Thus there exists a subfield Σ_1 of Σ such that

- 2.5. If $f \in L_2(\lambda)$ and $\int_A f d\lambda = 0$ for every $A \in \Sigma_1$, then weak $\lim_{n \to \infty} P^n f = 0$ in $L_2(\lambda)$ sense.
- 2.6. The sets A in Σ_1 are defined in [3] as sets of finite λ -measure such that the functions $P^{n^*}\chi_A$, $P^n\chi_A$ are all characteristic functions a.e. where χ_A denotes the characteristic function of A.
- Lemma 2. The σ field Σ_1 is generated by a countable collection of disjoint sets.

Proof. It is enough to show that each set $A \in \Sigma_1$ contains an atom.

Let us assume, to the contrary, that some set A, in Σ_1 , with $\lambda(A) \neq 0$ does not contain atoms of Σ_1 . Let $\chi_B = P^{d^*}\chi_A$ where P^{d^*} is the $L_2(X, \Sigma, \lambda)$ adjoint of P^d . Then by Theorem 1.1 of [3], $P^d(x, B) = P^d(\chi_B) = \chi_A$ a.e.

Since λ is a regular measure, there exists a compact subset C_0 , $\lambda(C_0) \neq 0$, of A, such that $P^d(x,B) = 1$ for every $x \in C_0$. Let A' be the set in Σ_1 which contains C_0 and has minimal λ -measure. Such a set is unique up to sets of measure zero and $A' \subset A$. Since A' is not an atom it contains a set A_1 , in Σ_1 , with $\lambda(A_1) \leq \frac{1}{2}\lambda(A') \leq \frac{1}{2}\lambda(A)$. Now $\lambda(C_0 \cap A_1) \neq 0$ for otherwise $A' - A_1$ would be smaller than A' and contain C_0 . Let $\chi_{B_1} = P^{d^*}\chi_{A_1}$; then $P^d(x, B_1) = 1$, $x \in C_0 \cap A_1$ a.e. Thus there exists a compact subset C_1 of C_0 such that $P^d(x, B_1) = 1$ for every $x \in C_1$ and $\lambda(B_1) = \lambda(A_1) \leq \frac{1}{2}\lambda(A)$. Using an induction argument, we find a decreasing sequence of sets $B_n \in \Sigma_1$, with $\lambda(B_n) \to 0$, and a decreasing sequence of compact sets C_n , such that $P^d(x, B_n) = 1$ for every $x \in C_n$. Let $x_0 \in \cap C_n$; then

$$P^{d}(x_{0}, \cap B_{n}) = \lim P^{d}(x_{0}, B_{n}) = 1$$

while $\lambda(\cap B_n) = 0$, which contradicts 2.1.

Let $W \in \Sigma_1$ be an atom and let PW denote the set whose characteristic function is $P\chi_W$.

Call W of the first kind if the sets P^nW are a.e. disjoint. Otherwise W will be called of the second kind. If P^nW intersects P^kW for k < n, then $P^nW = P^kW$ a.e. since they are atoms and hence $P^{n-k}W = W$ a.e. Define:

- 2.7. $X_1 = \bigcup \{W : W \in \Sigma_1 \text{ and is of the first kind} \}$.
- 2.8. $X_2 = \bigcup \{W : W \in \Sigma_1 \text{ and is of the second kind} \}$.
- 2.9. $X_3 = X X_1 \cup X_2$.

LEMMA 3. If the process is v-irreducible then either $X=X_3$ or $X=X_2$ and there exists an integer k such that $\Sigma_1=\{W,PW,\cdots,P^{k-1}W\}$ where $P^kW=W$. In this case the measure λ is finite.

Proof. If $W \in \Sigma_1$ and $W \subset X_1$, then $\int_W P^n \chi_W d\lambda = 0$, $n = 1, 2, \cdots$. Thus $P^n(x, W) = 0$, $x \in W$ a.e. Thus, since the process is v-irreducible, v(W) = 0 and also $\lambda(W) = 0$. Therefore X_1 is empty. Now let us assume that X_2 contains the nonempty set W. Then $P^n(x, W) = 0$ a.e. for $x \in X - W \cup \cdots \cup P^{k-1}W$ and thus this difference is empty.

THEOREM 2. Let μ be any measure. Let $A \in \Sigma$ and $\lambda(A) < \infty$.

- (a) If $A \subset X_3$ then $\lim (\mu P^n)(A) = 0$.
- (b) If $A \subset W \subset X_2$ where $W \in \Sigma_1$ and $P^k W = W$, then the limit of $(\mu P^{nk+j})(A)$ exists as $n \to \infty$ and $0 \le j < k$.
 - (c) If $A \subset W \subset X_1$ where $W \in \Sigma_1$, then $\lim (\mu P^n)(A) = 0$.

Proof. By Theorem 1 it is enough to prove these results for a measure $\mu \ll \lambda$. We may assume that $d\mu = f d\lambda$ where $f \in L_2(\lambda)$ since any measure μ which is weaker than λ can be approximated by such measures. Thus:

If $A \subset X_3$, then $(\mu P)^n(A) = \int P^n \chi_A f d\lambda \to 0$ since χ_A is orthogonal to the sets in Σ_1 and 2.5.

If $A \subset W \subset X_1$ where $W \in \Sigma_1$, then $\lim \int P^n \chi_A f d\lambda \leq \lim \int P^n \chi_W f d\lambda = 0$ since $\int_W P^n \chi_W d\lambda = 0$ and Theorem 2.1 of [3] applies.

Finally let $A \subset W \subset X_2$ where $W \in \Sigma_1$ and $P^k W = W$. Then

$$\lim_{n\to\infty} (\mu P^{nk+j})(A) = \lim_{n\to\infty} \int P^{nk+j} \chi_A \cdot f d\lambda = \frac{\lambda(A)}{\lambda(W)} \int P^j \chi_W \cdot f d\lambda$$

since the function $g = \chi_A - (\lambda(W)^{-1}/\lambda(A)\chi_W)$ is orthogonal to all sets in Σ_1 and thus weak $\lim P^n g = 0$ or

$$\lim \int P^{nk+j} \chi_A \cdot f \, d\lambda = \lim \frac{\lambda(A)}{\lambda(W)} \int P^{nk+j} \chi_W \cdot d\lambda$$
$$= \frac{\lambda(A)}{\lambda(W)} \int P^j \chi_W \cdot f \, d\lambda.$$

COROLLARY. If the process is v-irreducible, then either

- (a) $\lim_{n\to\infty} P^n(x,A) = 0$ for every $x \in X$ and every set A with $\lambda(A) < \infty$, π or:
- (b) The limit of $P^{nk+j}(x,A)$ exists for every $x \in X$, $A \in \Sigma$ and $0 \le j < k$.

Proof. It is enough to note that we get (a) when $X = X_3$ and (b) when $X = X_2$ since every set $A \in \Sigma$ can be written as

$$A = (A \cap W) \cup (A \cap PW) \cup \cdots \cup (A \cap P_W^{k-1})$$

and the previous theorem applies to $A \cap P^iW$.

THEOREM 3. If the process is v-irreducible and $X = X_2$, then for any measure μ and every j there are constants $\gamma_1 \cdots \gamma_k$ such that

$$\lim_{n\to\infty} (\mu P^{nk+j})(A) = \sum_{i=0}^{k-1} \gamma_i \lambda(A \cap P^i W)$$

for all A.

Proof. It is enough to consider μP^{nk} . Let $\tau(A) = \lim (\mu P^{nk})(A)$ where the limit exists for any $A \in \Sigma$. Then, by Corollary III. 7.4. of [2] the set function τ is countably additive and clearly $\tau = \tau P^k$.

From Theorem 1 it follows that $\tau \leq \lambda$. Let $\tau = \tau^0 + \dots + \tau^{(k-1)}$ where $\tau^{(i)}$ is the restriction of τ to P^iW . Thus $\tau^{(i)}P^k = \tau^{(i)}$ and so $\tau^{(i)} + \tau^{(i)}P + \dots + \tau^{(i)}P^{k-1}$ is invariant under P. It is easy to see that the invariant measure is unique (Theorem 1 and the ν -irreducibility) hence this sum is equal to $\gamma_i \lambda$ for some constant γ_i . Now $\tau^{(i)}$ P^j is zero on any subset of W_i :

If $A \subset W_i$, then $P^j \chi_A \cap W_i = \emptyset$ a.e. λ , hence a.e. τ , for $0 < j \le k - 1$. Thus $\tau^{(i)}(A) = \gamma_i \lambda(A \cap W_i)$.

3. Existence of a subinvariant measure for irreducible processes. In this section we use a small modification of Harris' argument to find a subinvariant measure.

In [5] Harris constructs a σ -finite invariant measure for infinitely recurrent process. Here we find only subinvariant measure under weaker conditions. Throughout this section we assume:

- 3.1. For every x, P(x, X) = 1.
- 3.2. The σ -field Σ is the Borel extension of a countable family of sets.
- 3.3. The process is v-irreducible where v is a given σ -finite measure.

Notice that X is not assumed to be a topological space and 2.1 is not assumed. Let us just mention those parts of [5] that require a modification in this case.

THEOREM 4. The process has a σ -finite subinvariant measure that is stronger than ν .

Let P_A by defined as in [5]. Lemma 1 of [5] should be restated:

A. Let A be a measurable set with $0 < v(A) < \infty$. If λ_A is a bounded sub-invariant measure for P_A , then the measure λ :

3.4.
$$\lambda(E) = \int_{A} \lambda_{A}(dx) P_{A}(x, E)$$

is subinvariant for P and is σ -finite.

The proof is almost identical to Harris'. First if $E \subset A$, then $\lambda(E) \leq \lambda_A(E)$. Also

$$\int \lambda(dy) P(y, E) = \int_{A} \lambda(dy) P(y, E) + \int_{X-A} \left[\int_{A} \lambda_{A}(dx) P_{A}(x, dy) \right] P(y, E)$$

$$\leq \int_{A} \lambda_{A}(dx) \left[P(x, E) + \int_{X-A} P_{A}(x, dy) P(y, E) \right] = \int_{A} \lambda_{A}(dx) P_{A}(x, E)$$

$$= \lambda(E).$$

The proof that λ is σ -finite is the same as in [5] and also $\lambda(A) \neq 0$, for we will see that $P_A(x,A) > 0$ for every $x \in A$.

Lemma 2 and Lemma 3 of [5] are unchanged. Thus $P_A^1 + \cdots + P_A^n \ge P^1 + \cdots + P^n$ see [5, Equation 4.17]. Now if $P_A(x, A) = 0$, $x \in A$, then

$$P_A^i(x,A) = \int_A P_A(x,dy) P_A^{i-1}(y,A) = 0.$$

Thus $P^{i}(x, A) = 0$, $i = 1, 2, \dots$, contrary to 3.3. Let us define

3.5.
$$Q(x,E) = \frac{P_A(x,E)}{P_A(x,A)}, \quad x \in A, \quad E \subset A.$$

Then clearly $Q^i \ge P_A^i$.

Put

3.6,
$$R(x,E) = \frac{Q^{1}(x,E) + \dots + Q^{k}(x,E)}{k}, \quad x \in A, \quad E \subset A,$$

where k is defined as in [5]. Then Lemmas 4 and 5 of [5] will show us that there exists a measure λ_A with

3.7.
$$\lambda_A(E) = \int_A \lambda_A(dx) Q(x, E), \qquad E \subset A.$$

Finally, it follows from 3.7 that

3.8
$$\lambda_A(E) = \int_A \lambda_A(dx) Q(x, E) \ge \int_A \lambda_A(dx) P_A(x, E), \quad E \subset A.$$

It remains to show that λ is stronger than ν . Now if $\lambda(E) = 0$, then

$$\int \lambda(dx)P^n(x,E) \leq \lambda(E) = 0.$$

Hence $P^n(x, E) = 0$ a.e., $n = 1, 2, \cdots$. Since $\lambda \neq 0$, there exists an $x_0 \in X$ with $P^n(x_0, E) = 0$, $n = 1, 2, \cdots$; hence v(E) = 0.

- 4. Existence of an invariant measure. Throughout this section we assume:
- 4.1. For every x, P(x, X) = 1.
- 4.2. There exists a σ -finite measure ν , and an increasing sequence of sets X_n , in Σ , such that:
 - a. $\bigcup X_n = X$.
 - b. $v(X_n) < \infty$.
- c. If $A \in \Sigma$ and $A \subset X_k$, then for every $\varepsilon > 0$ there exists an integer $n = n(A, \varepsilon)$ such that

$$\sup \{P^n(x,A): x \in X\} \le v(A) + \varepsilon.$$

LEMMA 4. Let $\mu \in ba(X, \Sigma)$ be invariant. If $A \subset X_k$, then $\mu(A) \leq \nu(A)$.

Proof. Let $n = n(A, \varepsilon)$; then

$$\mu(A) = \int P^{n}(x,A) \, \mu(dx) \leq (\nu(A) + \varepsilon) \int \mu(dx) = \nu(A) + \varepsilon.$$

DEFINITION. Let S be the collection of invariant measures with unit total measure.

If $\mu \in S$, then $\mu \le v$ on subsets of X_k by Lemma 4. Since both are countably additive, $\mu \le v$. Thus $d\mu = f dv$ where $0 \le f \le 1$ and $f \in L_1(v)$.

Now

4.3
$$(\mu P)(A) = \int P(x, A) \ \mu(dx) = \int P(x, A) f(x) v(dx).$$

LEMMA 5. Let $d\mu_1 = f_1 dv$, $d\mu_2 = f_2 dv$ where μ_1 and μ_2 are in S. If $d\mu = \max(f_1, f_2) dv$, then μ is invariant, too.

Proof. Put $Y_1 = \{x: f_1(x) \ge f_2(x)\}, Y_2 = X - Y_1$. Then

$$\begin{split} \int_{A} \max(f_{1}, f_{2}) dv &= \int_{A \cap Y_{1}} f_{1} dv + \int_{A \cap Y_{2}} f_{2} dv \\ &= \int P(x, A \cap Y_{1}) f_{1}(x) v(dx) + \int P(x, A \cap Y_{2}) f_{2}(x) v(dx) \\ &\leq \int \max(f_{1}(x), f_{2}(x)) P(x, A) v(dx). \end{split}$$

We used 4.2 and the invariance of μ_1 and μ_2 . Thus $\mu(A) \leq (\mu P)(A)$ for every $A \in \Sigma$. But $(\mu P)(X) = \int P(x, X) \, \mu(dx) = \mu(X) < \infty$; hence $\mu(A) = (\mu P)(A)$.

Consider the collection of functions f such that $fdv \in S$. Since $0 \le f \le 1$, the supremum of this collection in $L_1(v)$ is the supremum of a sequence f_n in this collection (Theorem IV, 11.7 of [2]). Let $g = \sup f_n$ and $d\lambda = gdv$. If $S = \emptyset$, then take g = 0. Let $g_n = \max (f_1, \dots, f_n)$, then $g = \lim g_n$ and by Lemma 5 and 4.3:

$$\int P(x,A) g_n(x) v(dx) = \int_A g_n(x) v(dx).$$

Passing to a limit, we see that λ is an invariant measure. Also $\lambda \le v$ since $0 \le g \le 1$; thus it is countably additive and finite on X_n .

HEOREM 5. There exists a σ -finite measure λ with

- a. $\lambda \leq \nu$.
- b. λ is invariant under P.
- c. If $\mu \in S$, then $\mu \leq \lambda$.
- d. Let A be contained in some X_k and $\lambda(A) = 0$. For every $\tau \in ba$

$$\lim \frac{1}{n} (\tau(A) + (\tau P)(A) + \dots + (\tau P^{n-1})(A)) = 0.$$

Proof. Parts a, b and c were proved above. Let $\tau_n = (\tau + \tau P + \dots + \tau P^{n-1})/n$ and assume that for some subsequence n_i , $\tau_{n_i}(A) \ge \delta > 0$. Since τ_n form a bounded sequence in $B(X, \Sigma)^* = ba$, there exists a weak * limit point μ to the sequence τ_{n_i} . Thus $\mu \ge 0$, $\mu(X) \le 1$ and $\mu(A) \ge \delta > 0$. It is easily seen that $\mu P = \mu$. Let $\mu = \mu_1 + \mu_2$ where μ_1 is a measure (c.a.) and μ_2 is purely finitely additive (see [7, p. 52]). Then $\mu \le \nu$ on subsets of X_k by Lemma 4. Hence $\mu_2(X_k) = 0$, for the restriction of μ_2 to X_k is countably additive. It remains to show that μ_1 is invariant which will contradict part c. Now

$$\mu_1 + \mu_2 = \mu = \mu P = \mu_1 P + \mu_2 P$$
.

Let $\mu_2 P = \sigma_1 + \sigma_2$ where σ_1 is c.a. and σ_2 is purely finitely additive. Then $\mu_1 = \mu_1 P + \sigma_1$ but $\mu_1(X) = (\mu_1 P)(X) + \sigma_1(X) = \mu_1(X) + \sigma_1(X)$ and $\sigma_1 = 0$.

REMARK. Part d can be replaced by: If A is contained in X_k , then $\lambda(A) = 0$ if and only if

 d^1 : $\lim (P(x, A) + \cdots + P^n(x, A))/n = 0$ for every $x \in X$.

 d^1 follows from d when we take τ to be a unit mass at x. Conversely given d^1 then for any $\mu \in S$

$$\mu(A) = \frac{1}{n} \int \left(P(x,A) + \cdots + P^n(x,A)\right) \mu(dx) \to 0.$$

Thus $\lambda(A) = 0$, too.

An example. Let v be a σ -finite measure and $P(x, A) = \int_A f(x, \xi) v(d\xi)$ where $0 \le f(x, \xi)$ and $\int_X f(x, \xi) v(d\xi) = 1$. It is easy to see that

$$P^{n}(x,A) = \int f^{n}(x,\xi) \, \nu(d\xi) \, , \, f^{n}(x,\xi) = \int f^{n-k}(x,y) f^{k}(y,\xi) \, \nu(dy) \, .$$

Put

$$g_n(\xi) = \sup \{ f^n(x, \xi) : x \in X \} \le \infty.$$

LEMMA 6. For every $\xi \in X$, $g_{n+1}(\xi) \leq g_n(\xi)$.

Proof.

$$f^{n+1}(x,\xi) = \int f(x,y) f^{n}(y,\xi) v(dy) \le g_{n}(\xi) \int f(x,y) v(dy) = g_{n}(\xi).$$

Hence $g_{n+1}(\xi) \leq g_n(\xi)$. Let $g(\xi) = \lim g_n(\xi)$.

Theorem 6. Condition 4.2 holds with respect to a measure v_1 equivalent to v if $g(\xi) < \infty$ for every $\xi \in X$.

Proof. Let $Y_k = \{\xi : g(\xi) < k\}$, then $Y_k \subset Y_{k+1}$ and $\bigcup_{k=1}^{\infty} Y_k = X$. Define v_1 by: $v_1(A) = kv(A)$ if $A \subset Y_k - Y_{k-1}$. Then $v_1 \sim v$. If $f_1^n(x, \xi)$ is the Radon-Nikodym derivative of $P^n(x, A)$ with respect to v_1 , then $f_1^n(x, \xi) = (1/k)f^n(x, \xi)$ whenever $\xi \in Y_k - Y_{k-1}$. Hence if g_n^1 and g^1 are defined for f_1^n in the same way that g_n and g were defined for f^n , then $g_n^1(\xi) = (1/k)g_n(\xi)$, $g^1(\xi) = (1/k)g(\xi)$ for $\xi \in Y_k - Y_{k-1}$. Thus $g^1(\xi) < 1$ for every $\xi \in X$. Also v_1 is σ -finite: if $\bigcup_{k=1}^{\infty} Z_k = X$ where $Z_k \subset Z_{k+1}$ and $v(Z_k) < \infty$; then $v_1(Z_k \cap Y_k) < kv(Z_k) < \infty$ and $\bigcup_{k=1}^{\infty} (Z_k \cap Y_k) = X$. Finally let $V_k = \{\xi : g_k^1(\xi) < 1\}$; then $V_k \subset V_{k+1}$ by Lemma 6 and with $X_k = Z_k \cap Y_k \cap V_k$ we get 4.2.

Let us conclude with a comparison between our results and Orey's [6]. In [6], Theorem 3 corresponds to part (b) of the corollary of Theorem 2. There it is assumed that the process is infinitely recurrent. We have to add a "Doeblin Condition," namely 2.1, but instead of assuming that whenever v(A) > 0, P [entering A at some time $|X_0 = x| = 1$, we only assumed that this quantity

is not zero. Part (a) of Theorem 3 furnishes, under our conditions, a positive answer to the problem posed by Orey in [6 end of §3, p. 816].

BIBLIOGRAPHY

- 1. J. L. Doob, Stochastic processes, Wiley, New York, 1953.
- 2. N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York, 1958.
- 3. S. R. Foguel, An L_p theory for a Markov process with a sub invariant measure, Proc. Amer. Math. Soc. 16 (1965), 398-406.
 - 4. P. R. Halmos, Measure theory, Van Nostrand, New York, 1950.
- 5. T. E. Harris, *The existence of stationary measures for certain Markov processes*, Proceedings of the Third Berkeley Symposium, Vol. II, pp. 113-124, University of California, Berkeley, California, 1956.
 - 6. S. Orey, Recurrent Markov chains, Pacific J. Math. 9 (1959), 805-827.
- 7. K. Yosida and E. Hewitt, *Finitely additive measures*, Trans. Amer. Math. Soc. 72 (1952), 46-66.

THE HEBREW UNIVERSITY OF JERUSALEM, JERUSALEM, ISRAEL